On some congruence properties of elliptic curves
نویسنده
چکیده
In this paper, as a result of a theorem of Serre on congruence properties, a complete solution is given for an open question (see the text) presented recently by Kim, Koo and Park. Some further questions and results on similar types of congruence properties of elliptic curves are also presented and discussed.
منابع مشابه
Positive Definite Quadratic Forms, Elliptic Curves and Cubic Congruences
Let F (x, y) = ax + bxy + cy be a positive definite binary quadratic form with discriminant Δ whose base points lie on the line x = −1/m for an integer m ≥ 2, let p be a prime number and let Fp be a finite field. Let EF : y = ax + bx + cx be an elliptic curve over Fp and let CF : ax + bx + cx ≡ 0(mod p) be the cubic congruence corresponding to F . In this work we consider some properties of pos...
متن کاملOn a congruence property of elliptic curves
Let d, α ∈ Z with d > 1. In this paper, we proved the following results about congruence properties of elliptic curves: (1) For elliptic curve E over the rational number field Q, if ♯Ẽp(Fp) ≡ α (mod d) hold for almost all primes p, then almost all supersingular primes p of E satisfy p ≡ α − 1 (mod d). In particular, α−1 is prime to d. Moreover, if φ(d) > 2, then E does not have complex multipli...
متن کاملComplete characterization of the Mordell-Weil group of some families of elliptic curves
The Mordell-Weil theorem states that the group of rational points on an elliptic curve over the rational numbers is a finitely generated abelian group. In our previous paper, H. Daghigh, and S. Didari, On the elliptic curves of the form $ y^2=x^3-3px$, Bull. Iranian Math. Soc. 40 (2014), no. 5, 1119--1133., using Selmer groups, we have shown that for a prime $p...
متن کاملEquivalences between Elliptic Curves and Real Quadratic Congruence Function Fields
In 1994, the well-known Diie-Hellman key exchange protocol was for the rst time implemented in a non-group based setting. Here, the underlying key space was the set of reduced principal ideals of a real quadratic number eld. This set does not possess a group structure, but instead exhibits a so-called infrastructure. More recently, the scheme was extended to real quadratic congruence function e...
متن کاملElliptic Congruence Function Fields
Recently, the well-known Diie-Hellman key exchange protocol was extended to real quadratic congruence function elds in a non-group based setting. Here, the underlying key space was the set of reduced principal ideals. This set does not possess a group structure, but instead exhibits a so-called infrastructure. The techniques are the same as in the protocol based on real quadratic number elds. A...
متن کامل